ПОСТАВКИ И МОНТАЖ ПРОМЫШЛЕННЫХ ПОЛОВ

                  И ПОКРЫТИЙ ПОЛА "АЛЬФАПОЛ"

 

  Телефон+7 (962) 579-73-67

 E-mail complect-stroi@mail.ru

 

    РФ, РТ, г.Набережные Челны

 Пн-Сб: 8.00-20.00

Калькулятор расчета пеноблоков смотрите на этом ресурсе
Все о каркасном доме можно найти здесь http://stroidom-shop.ru
Как снять комнату в коммунальной квартире смотрите тут comintour.net

Улучшение качества бетона на основе использования смешанных видов волокон.

Трещины представляют собой структурные дефекты бетонных изделий и делятся на два типа: технологические и силовые. Первые, размеры которых не превышают диаметра частиц заполнителя, а их длина составляет несколько микрон (1±5), — в основном микротрещины и поры в матрице, трещины и полости на границе крупного заполнителя и матрицы, возникающие в процессе изготовления конструкции. Они преимущественно располагаются в одном направлении, что приводит к существенному отличию механических свойств бетона вдоль и перпендикулярно к слоям бетонирования. Вторые, макротрещины, являющиеся результатом соединения микротрещин, представляют собой большие разрывы. Длина этих трещин может быть такой, что они проходят по всему поперечному разрезу образца — так называемые сквозные трещины, которые возникают в процессе эксплуатации конструкции. Силовые трещины обычно равномерно ориентированы, что приводит к изменению физико-механических характеристик по разным направлениям — анизотропии свойств. Наконец, в структуре бетона присутствуют магистральные трещины, характеризующие разрушение всей конструкции в целом или отдельных ее частей. Магистральные трещины относятся к мегатрещинам.

Производство и эксплуатация бетонных сооружений сопровождаются трещинообразованием, обусловленным комплексом причин (рис. 1). Трещины, деформации или разрушения могут быть вызваны ударными, вибрационными, другими динамическими нагрузками; упущениями в расчетах и армировании; использованием некачественных материалов; нарушениями режимов тепловой обработки и технологии монтажа; разнородностью прочности, упругости и жесткости используемых материалов; потерей прочности основания. Каждый из этих факторов наиболее интенсивно проявляется на разных этапах твердения бетона, и поэтому их влияние на долговечность бетонных элементов неодинаково.

Наибольшую роль играют деформации, происходящие в затвердевшем бетоне, причем основная доля приходится на те из них, которые связаны с растягивающими или изгибающими нагрузками, внутренними напряжениями при циклическом замораживании и оттаивании, воздействием внешней среды, коррозионными процессами. Развитие дефектов с течением времени существенно сказывается на напряженно-деформированном состоянии элементов конструкций. Предупредить все вышеназванные причины трещинообразования в бетоне или снизить степень их влияния на свойства материала можно применением дисперсно-армированных бетонов. Применение такого композита позволяет успешно решить ряд специализированных задач: усиление мостовых конструкций, взлетно-посадочных полос, промышленных бетонных полов, созданию солнцезащитных экранов, декоративных элементов и др.

 

                          

                                                           Рис. 1. Виды трещин и причины их возникновения

Несмотря на многообразие применяемых в строительстве дисперсно-армированных бетонов, в вопросе предотвращения образования и снижения темпов развития трещин ведущая роль отводится смешанным видам волокон. Существует два научных подхода к данной проблеме. Первый заключается в применении фиброволокон одного вида, но разных размеров. Например, сочетание макро- и микро фибры различной длины и объемного содержания. Второе направление научных исследований — использование двух и более видов фибры.

Одновременное использование волокон разной длины способствует сокращению количества как микро-, так и макротрещин. Микро волокна уменьшают количество микротрещин, позволяя избежать значительных дислокаций напряжений. Макро волокна необходимы для снижения числа дискретных микротрещин при высоких нагрузках. Фибра, содержащаяся в количестве менее 1 %, используется преимущественно для повышения трещиностойкости в плитах дорожных покрытиях, подвергающихся истиранию поверхности и высоким темпам развития усадочных трещин. Присутствие волокон в объеме от 1 до 2 % повышает предел прочности, сопротивление развитию трещин, ударную прочность, что позволяет применять этот композит для торкрет-бетонирования. Высокое содержание фибры более 2 % предназначено для деформационного упрочнения, создания ультрапрочного бетона.

Кроме того, направление и однородность распределения волокон в материале дополнительно повышают его эксплуатационную надежность. Бетон, в котором фибра распределена равномерно и выровнена в направлении основных воспринимаемых усилий, наилучшим образом сопротивляется воздействующей нагрузке. В идеале фиброволокна должны находиться в каждой секции структурных элементов, образующих бетон. Более того, они должны располагаться вдоль осей правильной решетки, наподобие треугольной (рис. 4). Продольные оси равны расстоянию S от каждой оси фиброволокна. Таким образом, комбинированное применение волокон разной длины предотвращает развитие процессов трещинообразования, вызванных растягивающими и изгибающими нагрузками.


     

                        

Рис. 4. Расположение частиц заполнителя между волокнами

Сама по себе фибра обладает высокой прочностью при растяжении и повышенным модулем упругости. Коэффициент теплового расширения у нее находится в тех же пределах, что и у цементного камня. Правда приходится констатировать, что микро фибра способна играть свою роль — приостанавливать развитие волосяных трещин — лишь на расстоянии между отдельными волокнами не более 12 мм (максимальная крупность заполнителя, которую не следует превышать). В целом дисперсное армирование от 1 до 3 % фиброй повышает прочность при сжатии до 40 % и прочность при изгибе до 150 %, резко увеличивает сопротивляемость механическим и тепловым ударам, повышает износостойкость.

Как уже отмечалось, причиной трещинообразования, а следовательно, и снижения долговечности строительных конструкций является воздействие внешней среды. Вероятность образования трещин в результате изменения объема воды (льда) в процессе циклического замораживания — оттаивания бетонных сооружений очень высока. В неизолированных образцах обычно быстрее всего высыхают и деформируются от усадки наружные слои бетона, что приводит к возникновению напряжений от неравномерной усадки и связанных с ними дополнительных трещин в структуре материала. Поэтому гибридный бетон незаменим в конструкциях, подверженных воздействию переменного уровня морской воды высокой солености.

Стоит заметить, что полипропиленовые волокна — наиболее популярный вид синтетических волокон, они химически инертны, гидрофобны и легки. Их использование в объеме менее 0,1 % понижает пластическую усадку в процессе трещинообразования, а следовательно, препятствует растрескиванию материала. Установлено, что присутствие полипропиленовой фибры в бетонах и растворах устраняет образование усадочных трещин на раннем этапе на 60–90 % (при применении арматурной сетки — всего на 6 %).

Как показали результаты исследований, прочность при сжатии исследуемого вида бетона немного выше аналогичного показателя образцов без фибры.

Существенное отличие свойств наблюдается после проведения 300 циклов замораживания при температуре –18 °C и оттаивания при +18 °C. На поверхности обычного бетона по окончании исследования появились крупные трещины длиной от 8 до 25 мм, в некоторых случаях даже откололись небольшие куски образцов.

Тогда как армирование двумя видами волокон привело к тому, что поверхность бетонных кубиков со стороной 100 мм была покрыта сетью мелких неглубоких трещин, максимальной длиной 9 мм. Подсчитано наибольшее количество трещин: 37 из них соответствуют дефектам длиной 2±2,5 мм, 20 — 4,5±5 мм.

Данный вид дисперсно-армированного бетона обладает высокой долговечностью в условиях пониженных температур, агрессивного воздействия водных растворов, благодаря тому, что на стадии структурообразования происходит перераспределение напряжений при пластической усадке от наиболее опасных зон на весь объем материала; а в процессе эксплуатации — замедление темпов роста трещин, снижение концентрации напряжений в области макродефектов, выравнивание и перераспределение напряжений в структуре бетона между его составляющими.

Причиной развития внутренних напряжений, способствующих появлению дефектов, подобных трещинам, может служить и кристаллизация в порах бетона солей, содержащихся в агрессивной среде. Эти процессы значительно ускоряются при попеременном погружении конструкций в раствор соли и высушивании, так как к химическим взаимодействиям агрессивной среды и цементного камня в бетоне добавляются физические процессы кристаллизации продуктов коррозии. Наиболее часто на практике встречается образование кристаллов гипса, когда происходит взаимодействие агрессивной сульфатсодержащей среды с раствором гидроксида кальция, находящегося в поровой жидкости бетона. Кристаллы гипса оседают на стенках пор и капилляров, вызывая тем самым напряжения. Дополнительно они способны инициировать формирование моносульфатной формы гидросульфоалюмината кальция, а также образование эттрингита, стимулируя еще более значительные напряжения.

Воздействие влаги в присутствии различных солей активизирует физико-химические взаимодействия фазовых составляющих материала. Такие условия интенсифицируют процессы внутреннего массообмена и способствуют миграции веществ в структуре бетона, что вызывает изменение состава поровой жидкости и уменьшение концентрации водорастворимых щелочей. Это приводит к увеличению концентрации мигрирующих веществ на отдельных участках. Существование таких активных участков обусловливает неравномерность развития напряжений в теле бетона и развитие крупных трещин, устьями которых являются активные участки.

Процесс трещинообразования при этом характеризуется быстрым разрушением элементов конструкций.

В любом случае кристаллизация, создающая внутренние напряжения, в начале приводит к образованию микротрещин, затем внутри них происходит рост объема экспансивных фаз. В результате расклинивающего действия толщина этих трещин возрастает, увеличивается длина, происходит раскрытие трещин, приводящее к объединению их в макротрещины и, в конечном счете, к разрушению конструкции.

В случае применения микро и макрофибры, рост микродефектов на начальном и последующем этапах может быть предотвращен или остановлен. В результате конструкция не распадается на куски, сохраняя свою целостность и несущую способность.

Таким образом, применение дисперсного армирования  позволяет снижать концентрацию напряжений, предотвращать развитие встречных трещин и затруднять процесс трещинообразования. Выбирая типы смешанных волокон и корректируя соотношение объема этих волокон друг к другу и бетону, возможно направленно регулировать свойства материала, повышая его трещиностойкость, что в свою очередь обеспечивает качественное улучшение не только стойкости материала под нагрузкой, но и повышает коррозионную стойкость, обусловленную ростом внутренних напряжений, а также атмосферостойкость, стойкость к переменному увлажнению — высушиванию, замораживанию — оттаиванию и другим циклическим процессам.